5 research outputs found

    Extending BIM for air quality monitoring

    Get PDF
    As we spend more than 90% of our time inside buildings, indoor environmental quality is a major concern for healthy living. Recent studies show that almost 80% of people in European countries and the United States suffer from SBS (Sick Building Syndrome), which affects physical health, productivity and psychological well-being. In this context, environmental quality monitoring provides stakeholders with crucial information about indoor living conditions, thus facilitating building management along its lifecycle, from design, construction and commissioning to usage, maintenance and end-of-life. However, currently available modelling tools for building management remain limited to static models and lack integration capacities to efficiently exploit environmental quality monitoring data. In order to overcome these limitations, we designed and implemented a generic software architecture that relies on accessible Building Information Model (BIM) attributes to add a dynamic layer that integrates environmental quality data coming from deployed sensors. Merging sensor data with BIM allows creation of a digital twin for the monitored building where live information about environmental quality enables evaluation through numerical simulation. Our solution allows accessing and displaying live sensor data, thus providing advanced functionality to the end-user and other systems in the building. In order to preserve genericity and separation of concerns, our solution stores sensor data in a separate database available through an application programming interface (API), which decouples BIM models from sensor data. Our proof-of-concept experiments were conducted with a cultural heritage building located in Bled, Slovenia. We demonstrated that it is possible to display live information regarding environmental quality (temperature, relative humidity, CO2, particle matter, light) using Revit as an example, thus enabling end-users to follow the conditions of their living environment and take appropriate measures to improve its quality.Pages 244-250

    Privacy-aware and secure decentralized air quality monitoring

    Full text link
    Indoor Air Quality monitoring is a major asset to improving quality of life and building management. Today, the evolution of embedded technologies allows the implementation of such monitoring on the edge of the network. However, several concerns need to be addressed related to data security and privacy, routing and sink placement optimization, protection from external monitoring, and distributed data mining. In this paper, we describe an integrated framework that features distributed storage, blockchain-based Role-based Access Control, onion routing, routing and sink placement optimization, and distributed data mining to answer these concerns. We describe the organization of our contribution and show its relevance with simulations and experiments over a set of use cases
    corecore